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SUMMARY

Open-loop pulsed transfer functions of the simplified thrust

vector control system f

2

r a Saturn-type vehicle with an unsampled
input are derived by the fictitious sampler and fictitious hold
method and by the describing function method. Both methods are
approximate with accuracy depending on the low-pgss nature of the

system. Typical examples of both methods are given.



PERSONNEL

The following named staff members of Auburn University have actively

participated on this project.

C. H. Weaver - Head Professor of Eleetrical Engineering

H. M.
G. T.
C. L.
c. L.
R. E
J. §
D. W.

Summer - Professor Electrical Engineering

Nichols - Associate Professor of Electrical Engineering
Phillips - Associate Professor Electrical Engineering
Rogers - Assistant Professor of Electrical Engineering
Littleton - Instructor of Electrical Engineering

Boland - Graduate Assistant in Electrical Engineering

Kelly -~ Graduate Assistant in Electrical Engineering

ix




DIGITAL COMPENSATION OF THE THRUST VECTOR CONTROL SYSTEM

I. INTRODUCTION

A complete analysis of the system shown in Figure 1 requires the
determination of the gain and phase margins in each of the three
channels. These margins may be determined analytically by breaking
the system in each of the three channels, obtaining the open-loop
transfer function of the system for each channel respectively, and
investigating the Nyquist diagram of each of these transfer functions
about the minus one point. An open-loop transfer function can
readily be obtained if the input signal is sampled before passing
through a continuous-data element. An example is the system shown in
Figure 1 broken at the point ¢. A open-loop transfer function can
not be written, however, if the input signal is acted upon by a con-~
tinuous-data element in the system before being sampled. An example
is the system shown in Figure 1 broken at the point Be or at the
point 5.

This report is concerned with obtaining a Nyquist diagram for
the system shown in Figure 1 broken at B8,. The two methods described
are the fictitious sampler and fictitious hold method and the des-
cribing function method. Both methods are approximate and depend
on the low=pass nature of the system. The two methods and the

limitations of each are presented in the following sections of this

report.




Appendix A gives some basic sampled-data control system theory

and has been included to provide a common ground for the reading of

this report.




Ii. FICTITIOUS SAMPLER AND FICTITIQUS HOLD METHOD

J. S. Boland

This chapter is concerned with the derivation of an approximate

transfer function of the system shown in

channel.

Derivation of Input-Output Expression of System Broken in B, Channel

In order to determine the gain and phase margins of the system
shown in Figure 1 broken at Be, the open-loop transfer function must
be obtained at this point. If the system is broken as shown in

Figure 2, the sampled output, X:, is given by
* * £ . *
Xo(s) = Xiszss(s) + XiGl(s) HOWSS(S) (1)

Equation (1), however, is not a true transfer function since the
input, X;, cannot be factored out of the output expression. If both
sides of (1) are divided by X?(s), the resulting transfer function
is dependent on the input and is therefore not a true transfer
function. In general, if the input to a discrete system is acted
upon by a continuous-data element before being sampled, it cannot be

factored out of the resulting output expression and therefore no

transfer function can be written.



Fictitious Sampler and Fictitious Hold Operating at a Multiple Rate
of Basic Sampler

Since a tranmsfer function for a discrete system cannot be written
unless the input is sampled, one method of obtaining an approximate
transfer function is to insert a fictitious sampler and fictitious
hold at the input terminal as shown in Figure 3. The fictitious
sampler, however, introduces an intinite number of harmonic components
that are not present in the original system. The effects of these
harmonics will now be investigated.

First, the possibility of operating the fictitious sampler at a
much higher rate than the rate of the basic sampler was investigated
The higher the sampling frequency of the fictitious sampler, the less
effect it has on system performance. Theoretically as the sampling
frequency approaches infinity, the effects of the fictitious sampler
and hold become completely negligible.

The fictitious sampler can be represented by a flow graph as
shown in Figure 4 if its sampling rate is an integral multiple, N,
of the basic sampling rate of the sampler in the ¢ channel. Figure
5 is the composite signal flow graph representing the system shown
in Figure 3 illustrating the case of the sampling rate of the fic-
titious sampler being twice that of the digital sampler. By using
Mason's gain formula1 the pulsed output, X:(s), can be expressed

as




7 r
Xz(s) X5 (S)<{wssG2H (s) + [GlHoJ* (s) t ssH O] (S)/

- sT/21*('[ -sT/2 | -sT/2 s Ta \
s “ra
+ LX]'_(S)€ JAN LWSSG2H0€ _-J' (s) + !{-GIH € ‘} (_,)I'L_I,.'Y 0 (D)/

No transfer function can be obtained from (2) since X, {s) camnot be

factored out of the second term. This is true because

2; {EST/ZXi(S)‘ #zllzxi(z) 3)

The generalized form of (2) expressed in modified z-transform form

i82
X (z) =X.(z W..G,H 1(z) + tfG H ﬁ(z)(w H -(z)
o i ss™2 oj L 1 o | | 'ss o
N-1 -
+ z z X; (2, P/N( LWSSGZHOJ(Z, 1-P/N) 4)
P=1
+ [GIHO}(z, 1-P/N){WSSHO](Z ))
where
r |
;97 LePTS/NE(s)J= zE(z, P/N) 0<pP/N<1
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and
79 | -PTs/N |
j € E(s)j= E(z, 1-P/N) 0<P/N<L1

The results of (2), (3), and (4) show that if the rate of the
fictitious sampler is not identical to the basic sampling rate of the
system, no transfer function can be written.
Fictitious Sampler Operatiflg st Basic Sampling Rate of System

Since, as shown in the above section, a transfer function cannot
be obtained for the system broken in the BC channel unless the signal
is sampled in this channel at the same rate as the sampler in the
% channel, the effects of adding a fictitious sampler and hold in the
BC channel and then compensating analytically for their effects on
the system was investigated.

If the continuous input to the fictitious sampler is E(s), the
sampled output is given by

o0
* 1 . e(ot
E (s) = E(s + joo ) + e(oh) 5)
T 8 2
n=-co

+
The Eﬁ%—l term in (5) is included to account for the effect of the

sampler when the input signal has a jump discontinuity, e(o+), at
)
term

t = 0. For the system shown in Figure 3 (with N = 1), the



is zero. If the highest input frequency of the input signal, e(t), to
the sampler is W the frequency spectrum of the sampler output is
as shown in Figure 6. For some input frequency w < &E the output
magnitude and phase in Figure 3 will be the combined effect of the
fundamental plus all the harmonic frequency components of the sampler
output.

In selecting the fictitious hold to be used, one of the desired
characteristics is a high attenuation of the higher frequency har-
monics generated by the sampler. The zero-order and polygonal holds

were considered with transfer functions as given below.

-sT
5 = l1-¢€
o s
(6)
_ €'I‘s(1 _ €-TS)2
H, 2
Ts

The polygonal hold is not physically realizeable since it requires a
predictor, but this causes no concern here since it is introduced
fictitiously and used only for analytical analysis. The gain and
phase plots for varying o for the two holds are as shown in Figure
7. 1t was felt that the polygonal hold would give better results
since it introduces no phase shift and attenuates the higher fre-

quency components considerably more than the zero-order hold.




In addition to the attenuation introduced by the hold, the low-
pass nature of the system will also attenuate the harmonic components
of the output of the sampler. Considering only six bending modes,
the highest frequency component that must be considered is approxi-
mately ag/&, or 6.25 hz. The predominant reflected frequency for
this input frequency is 25 hz - 6.25 hz or 18.75 hz. The polygonal
hold attenuates this reflected frequency by 20.9 db in addition to
the attenuation introduced by the system. For input frequencies less
than 6.25 hz, the attenuation of the first reflected frequency by
the polygonal hold is much greater.

If the fictitious sampler shown in Figure 3 is operating at the
same rate as the sampler in the ¢ channel, the open-loop approximate

transfer function for the system broken in the 6c channel is

X5 (2)
Xi(z)

r
= [HGl(z)] LHOWSS(Z)} + GZHWSS(Z) (7)

The transfer functions shown in the block diagrams of Figures 1,

2, and 3 are defined as follows:

- 0.94068468

G (s) = 7

1 s -0.029727836

- 0.94068468 s

G (s) = 9 (8)

2 s§-0.029727836

625

W s) =

o5’ s2 + 255 + 625




The constants of these transfer functions were taken from a set of
typical data at forty seconds flight time for a Saturn V vehicle.
Curve A of Figure 8 is the Nyquist diagram of the continuous
system shown in Figure 3 with both samplers and the fictitious hold
removed and is included for comparison purposes. Curve B is the
compensated Nyquist diagram of the sampled system with a fictitious
zero~-order hold in the Bc channel. The compensated Nyquist diagram
is the diagram of (7) with the db attenuation and phase lag introduced
by the fictitious zero-order hold on the fundamental frequency added
back into the diagram. Curve C is the compensated Nyquist of the
sampled system with a fictitious polygonal hold in the Pe channel.
Curve C, however, coincided with Curve A out to approximately 8 hz
and could not be plotted as a separate curve. The frequency responses
of both the zero-order hold and polygonal hold are shown in Figure 7.
As shown in Figure 8, the fictitious polygonal hold gives more
accurate results than the fictitious zero-order hold. This was
expected, however, since the polygonal hold attenuates the higher
frequency components introduced by the fictitious sampler more than
the zero~order hold. It should be pointed out that the sampled-
system Nyquist should not coorelate exactly with the continuous Nyquist
because of the higher frequency harmonics introduced by the sampler
in the ¢ channel. Most of the effects of these higher harmomics,
however, are filtered out by the low-pass nature of the system for

input frequencies less than wS/A.
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It is concluded that both the fictitious zero-order hold and
the fictitious polygonal hold will yield accurate results at fre-
quencies less than wS/A with the polygonal hold yielding the most

accurate results up to approximately 8 or 9 hz.

Derivation of Approximate Transfer Function Using a Fictitious Sampler
and Fictitious Tdeal Hold

In the previous section of this chapter an approximate transfer
function was obtained by inserting a fictitious sampler and fiectitious
hold at the input terminal. The best fictitious hotd is one that
completely filters out the harmonics generated by the fictitious
sampler. The polygonal hold used in the previous section is the best
hold found that can be expressed analytically. This hold was seen
to yield good results for the low-pass system shown in Figure 1.

The effects of the harmonics generated by the fictitious sampler
can be completely eliminated by using a fictitious ideal filter with

characteristics as shown in Figure 9. The ideal filter can be repre-

sented by
B (o) = A@e’”® ©)
where
Al@) =T ‘aﬂ < ‘wS/2‘
(10)
Alw) =0 \aﬂ > \wS/Z‘

and 8(w) = 0, giving no phase shift through the filter.




The system of Figure 10 will be used to illustrate the develop-
ment of a transfer function. The sampled output for Figure 10 is

given by
* * *
C (s) =R (s) HIG (s)
The open-loop transfer function of the system shown in Figure 10 is

. e
€ (s) o HIG*(S) =% Z HG(s + o)

R (s)

T 1v o)

Expanding (12),

*
1
E;SEl == [H G(w) + HG(Uw -~ ju ) + HG(w + jw )
R (S) T I I S I S
+ HIG(Jw - Zjdg) + HIG(Ja>+ ZJ&g) + ... }

If the input frequency, w, is less than wS/Z, all of the terms in
(13) with the exception of the first term will be zero, since, as
shown in Figure 9, the ideal hold completely attenuates all fre-

quencies greater in magnitude than a%/Z. Therefore (13) reduces to

*
C (o) 1 .0 L oveci
R o) T HG(jw) = 767 (Jw)6(jw)

11

(11)

(12)

(13)

(14)
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But from Figure 9,H1(jw) = T for ‘w‘less than ‘ws/Z‘. Therefore (13)
becomes

¢’ d 1

€ (®) - 2(1) 6(jw)

*

R*(Gw) T
or

< Gw)

m .
12 = () (15)

R™ (jw)

The output of the ideal hold in Figure 10 is R(s), since HI(S)
exactly reconstructs the sampled input. Therefore the continious
output in Figure 10 is

C(jw) = 6(jw) R(jw)
or

CUw) - g(jw) (16)

R(jw)

Equations (15) and (16) show that for input frequencies less than

ws/2, there is no effect from the insertion of the sampler and ideal

hold into the system.
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The results shown in (15) and (16) are very important when
analyzing systems with inputs that are not sampled before passing
through a continuous element. The sampled output of Figure 11 is
* _ * *,
cY(s) = [GR (s)] [HOWSS(S)] (17)

No transfer function can be written since the input cannot be factored
out of the output expression in (17). By inserting a fictitious sampler
and ideal hold at the input terminal as shown in Figure 12 and using

the results of (15) and (16),a transfer function can be obtained and

is given by

~+o0
Gw) . f1 L
R (jw) G(Jw)[T Z HoW, (G + st)} (18)
n=-c

Equation (18) is valid only for input frequencies less than wS/Z.
For 0 <w < wS/Z, (18) gives an exact Nyquist diagram for the open-
loop system shown in Figure 11.

If the open-loop system shown in Figure 11 is clo;ed, however,
(18) does not give an accurate Nyquist diagram for the closed-loop
system about the minus one point. The reason for the inaccuracy is
the harmonic components generated by the sampler being fed back into

G(s). The effects of the harmonics were not considered in the cpen-




loop system. 1If the system is low-pass, however, these harmonic

components are negligible, thereby allowing the negative of (18) to

be investigated about the minus one point to determine the gain and

phase margins of the closed-loop system.

The ideal hold method of analysis can be applied to the system

sh

own in Figure 2 with
The open~loop transfer

sampler and fictitious

(6 and (8).

14

function, 0.L.T.F., obtained by the fictitious

ideal hold method of analysis presented above is

When the loop is closed at Be, the system shown in Figure 1 can be

redrawn as shown in Figure 13.

can now be expressed as

X0 _ 0.L.T.F.

Xi  1-0.L.T.F.

or

X  o.L.T.F.

X;  14(-0.L.T.F.)

The closed-1loop

transfer function

(19)

(20)



The Nyquist of the negative open-loop transfer function was then
obtained by using the digital computer program shown in Appendix B.
This Nyquist differed from the continuous Nyquist shown in curve A
of Figure 8 by only .05 db and .3 degrees at w = wS/Z and therefore
could not be plotted as a separate curve. This indicates that the
effects of harmonics generated by the sampler can be comnsidered
negligible for the low-pass system given by (8).

Although the ideal hold method of analysis agrees very closely
with the continuous system, it is believed to be more accurate than

the continuous system since the effects of the higher harmonics

generated by the sampler in the forward loop are considered. However,

more work must be done in this area with systems that are not as
low-pass as the system described by (8) to determine the validity of

this statement.

15




IITI. APPROXIMATE TRANSFER FUNCTION
USING THE DESCRIBING FUNCTION ANALYSIS

R. E. Littleton

Figure 14 is a block diagram of the thrust-vector.control system
including the bending modes. An open-loop transfer fumction can be
written when the system is broken in the ¢ channel only. However,
an open-loop transfer function is needed for each channel. An
approximate method is given below which will allow a transfer function
to be written for the other channels. The method uses describing-
function techniques.

Derivation of the Describing Function for the Sampler and Zero-Order Hold

Figure 15 is a graph of the input and output to the sampler and

zero-order hold where the input is ¢i(t) = sin(wt + 8). Then

o
Y

6.5 (t) = > sin(enT + 6)5(t-nT) (21)

n=0

and

oo

¢o(t) = Z{‘ sin(wnT + ©) {u(t - nT) - u[t - (n+ 1)T] > (22)
n=0

16
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The Fourier series for ¢O(t) can be used to find the magnitude of
its fundamental frequency. The Fourier coefficients, Ck’ where
oo
T jkzﬂt
A (+Y = o 1
To\ts T L‘ bke e (23)
k=~
and where L is the total period of the output wave, are
q-1
1 s
Ck =" }: sin(nwT + e)sh1<2%;> e~ Jkm(20+1)T/2 (24)
n=0 )
q is defined as Tq = L, and is the smallest possible integer. The
magnitude of the k™ harmonic of the output is Z‘Ckl .
The plots of the magnitude and phase lag of the fundamental
frequency of eo(t) are given in Figure 7. The plots were found to
be the same as that for the transfer function of the zero-order hold,
1 -juT
. —=——t
H (jo) = e (25)
with the exception of w = ws/2. At © = ws/2
4
Z!Cl' = jt‘s:.ne‘. (26)
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This occurs because, at an input frequency of wS/Z, the output funda-
mental is composed of two terms. The additional term is due to the
reflected frequency and the sum of the two terms is phase sensitive.
The transfer function of the zero-order hold is therefore used for
its describing function.

The describing function is good only for freqLencies less than
ws/2. This is true since, for an input frequency greater than mS/Z,
a subharmonic frequency is generated at a frequency less than ws/z.
This subharmonic cannot be ignored.
The Describing Function of the Digital Compensator

According to J. M. Salzer,3 the substitution z = eST .= ejwT

s=jw
may be used for the digital program of the digital computer since
the program only holds, sums and multiples. Therefore the transfer
function of the digital compensator used in Chapter IV of the first
technical report
z 0.99
z) =

D(z) ==7"0.90 27

becomes
jwT
D(jay = S99 (28)
eJ®T. 0.90

for the frequency analysis. D(jw) is the describing function for the

digital compensator.
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The same D(z) may be realized using a zero-order hold and
continuous network but the frequency response would depend on the type
network used, since the same z-transform may be obtained with different

types of networks.

The Nyquist Diagram of the System Using the Describing Function Approach

The following equations were used for the transfer functions of

the system shown in Figure 14.

Ts

25(1 - ¢
B (s) = (1-e¢ ) (29)
s
Ts
D(s) = geT - 0.99) 303
(e'S - 0.90)
625
Weg(8) == 1)
s2 + 255 + 625
6TR(s) = 5 0.94068468 32
s2 - 0.02972784
2
0.0065323138 (s + 498.59362
GIBI(s) = x¢ ) (33)
s+ 0.064905305s + 42.126986
- 0.0040378959 (s> + 485.48033)
GIB2(s) = (34)
sZ + 0.12013450s + 144.32299
2
C1B3(s) = —0:0053896739(s” + 470.36052) 35

s2 + 0.1837817s + 337.76255
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0.0058368238 (s> + 469.03256)

GIB4(s) = 5 (36)
s° + 0.22481237s + 505.40603

-~ 0.94068468s

GZR(s) = ™ "4 02972784 G7N
0.0065323138s (s + 498.59362)
G2B1(s) = — (38)
s2 + 0.064905305s + 42.126986
- 0.00403 )
c282(s) ozooao 78959s(s  + 485.48033) (39)
s + 0.12013450s + 144.32299
- 0.0053896739s(s + 470.36052
62B3(s) = — ( 2) (40)
s + 0.18378317s + 337.76255
2
0.005836823 9.03
C2Bi(s) 20058 68238s (s + 469.03256) 1)
s2 4 0.22481237s + 505.40603
GIB5(s) = GIB6(s) = G2B5(s) = G2B6(s) = O (42)

The equations for the bending-mode effects were obtained from the
data furnished by the Astronics Laboratory, Marshall Space Flight

Center at 40 seconds of flight time.

The Nyquist diagrams of the system broken in the different
channels using the describing-function approach are given in Figures
16, 17, 18, 19, 20 and 21. The plots are shifted 180° in order to use
the -1 point or 0 db at 180 degrees for determining the stability of

the system.
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The equations used to obtain the open-loop response broken in the
different channels are:
DH W55 (GIR + GIB1 4+ G1B2 + G1B2 + G1B4)
® open-l00P = ).y _(GZR + GZBL + G2B2 + G283 + GzB4) (3O (43)
. W (G2R + G2B1 + G2BZ + GZB3 + G2B4)
¢ open~loop = (Gw)  (44)
1 - Wgg(GIR + G1B1 4+ G1B2 + G1B3 + G1B4)DH0
Be open-loop = Wss[(GZR + G2Bl1 + G2B2 + G2B3 + G2B4)
(45)

+ (GIR + G1Bl + G1B2 + G1B3 + G1B4) DHO}(jw)

Figures 16,17 and 18 are with no bending modes and Figures 19,20 and
21 are with 4 bending modes.

An attempt was made to check the results of ¢ open-loop using the
describing function with that of ¢ open-loop using the z-transform
N&éuiéﬁwaiagram since a transfer function can be written for this case.
Trouble was encountered carrying enough significant figures in the

-

z-transform computer program. See Figure 22. Thus,

* 1 = ‘ +
6 () =7 ) GG+ iw) + 50N (46)

n=-w




The results of (47) are shown in Figure 19 for two cases, first when
(47) was approximated varying n through ¥ 2 and when n was varied
through ¥ 10. The two cases were practically identical so this was
considered as the correct Nyquist diagram. The difference in the two
cases was in the second and third significant figures. Appendix B

is a sample program of the digital program used to make these calcu-
lations. Also, as can be seen from the same figure, the describing
function Nyquist diagram obtained is nearly the same as that when
using (47). Thus, the describing function approach should give

excellant results. See Table 1. The poles of ¢ open-loop are

o«
s = }Z - 2.63 + Inwg
==

n

|

i
|

sy = 0.0
Sy = - 0.9527
s3 = 0.0306

22
was used instead? For a low-pass system, good results are obtained
using only a few terms of (47). Then,

(47)
oo
i ' DHG{GIR + GIBl + GIB2 + G183 + G1B4) .
¢ open-loop = = ZL (Gotinwg)
T 1 - (G2R + G2Bl + G2B2 + G2B3 + G2B4)
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s, = 1.283 - j6.104

©~

s, = 1.283 + j6.104

s, = = 0.5337

j12.48

s, = - 0.5337 + j12.48

sg = - 0.1477 - j22.61
sy = = 0.1477 + j22.61
s1p = - 11.69 - j21.67
sy = 11.69 + j21.67
$19 = -.0.3320 - j18.75
sy3 = - 0.3320 + j18.75

The system is unstable with the bending modes included since

23

there are three poles of the open-loop transfer function in the right-

half s-plane, P = 3 and N = 1.

Therefore, z = P - N = 2.



IV. CONCLUSIONS

The fictitious sampler and fictitious ideal hold method of
analysis gives an exact Nyquist for the open-loop system shown in
Figure 2. When the loop is closed, however, investigation of the
open-loop Nyquist about the minus one point leads to inaccurate
results due to the higher harmonics generated by the sampler in the
¢ loop being fed back. TIf the system is low-pass, however, the effects
of these harmonics will be negligible. Since the system shown in
Figure 2 and described by (8) is low-pass, the fictitious sampler and
hold method of analysis gives good results.

As can be seen from Figure 19, the describing function technique
gives good results for frequencies less that 10 cps. The results of
the Nyquist diagram using single precision on the computer for z-
transform methods were not satisfactory and were inconclusive. This can
be seen by comparing Figures 19 and 22. However, good results are

obtainable for a low pass system by the z-transform method ifrthewt;ans-

féf”fﬁﬁétion is aéproximated by a few terms of the infinite-series re=-
presentation as given in (47). The digital computer program can be in
single precision. The describing-function technique shows that the
system is unstable with and without the bending mode effects with no
compensation. The system is stable with the compensator, D(z), in (27),
for the rigid body case and unstable when including the bending mode
effects. Therefore, some other compensator is needed to stabalize

the system for both cases.
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APPENDIX A

SAMPLED-DATA CONTROL SYSTEMS-BASIC THEORY

C. L. Phillips

Sampling Operation

The sampling operation is defined as shown:

e(t) s ep(t)ﬂ\
V * -
e(t) e & (B \
- ;cmie '—2 ,’ \D
St 1 | L3
ol ¢ T T+p 2T rep’ 2

For

aT<t<nT+p, n=0,1,2,..., ep*(t) = e(t),

and for
nT + p e (n+ DT, ep*(t) =0 .

The sampling operation can be considered as a modulation process,

()
i

*
e(t) — | t
() Modulator ‘ ep( )

where
p(t) = 2{: [u(t - nT) - u(t - nT - p)}

Then
26
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.

ep (£) = e(£)p(t)

Assumption 1: The pulse width, p, is small compared to the dominant

time constants of the system. Then
ep (£) = e1" (1) = pe(0)5(t) + pe(TI5(t-T) + pe(2TI5(t-2T) + ...

Assumption 2: Each sampler is followed by a data-hold device. (This
assumption is justified in the section on data holds.) Then the out-

put of the sampler, which is referred to as an ideal sampler, is

e(t) - e (1)

ideal sampler

5]

e¥(t) = e(0)a(t) + e(T)8(t-T) + =Z e (nT)5 (t-nT)

n=0

The Laplace transform of e*(t) is

E*(s) =L [e*(t)1 = ;iJ e(nT)(—:-nTS

E*(s) can be expressed in a different manner. Let

N
sp(t) = /l 5(t - nT)

n:- 2]

27
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and suppose

e(t) =0 for t <0 .
Then

e (t) = e(t)sp(t)

By Fourier analysis

o0 o0
= N = \ j t _ 2
sp(t) = ) 5(t-nT) = ‘EJ c ™t ug = 2
n=-0o nN=-=0
Now
T/2 T/2
=1 -jowgt. 1 - jnwgt
c, = p L/ﬂ Bp(t)e s dt = T \/P 8(t)e stdt
-T/2 -T/2
€/2
-1 [ sl
TV . T
-€/2
The frequency spectrum of dp(t) is
Tleal
_ /T
| - : ! f T ! -
I
‘ | ‘ I | |
| L S D N S N
-bwg - 3wg - 2wg -Wg 0 Wg 2w 3wg bawg w
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Then
() = e(0)8p(e) = 1 ) e(e)ednst
n=-o
Thus
E¥(s) =% > E(s + joog) + 200

The term e(01)/2 does not appear in the derivation, because 2(t) was
assumed to occur with its weight equally distributed about the origin.
1f 5(t1) were used, where the weight of 8(tT) occurs at t = ot, this
term would appear. This term should be present. For a derivation,

see Pierre and Kolb, Reference 5.

If the signal e(t) has the frequency spectrum

then, from

N +
E*(s) = 2; E(s + jnwg) + Eig—l

29



E*(s) has the frequency spectrum

tEGY)]
{
i
{
P ~ -
‘ a ‘ N\ ,
\ ; : / 1\\\ « \ // \
\ !‘ l’\ \ : : v
S A SR N U S S .
=20 gon -0 D, mg=ig Wg  WgHe, 20

From this spectrum it is seen that the original signal can be recovered

by an ideal low-pass filter if

>
-~C

‘J"S Ge
or

We > ch

s

This illustrates Shannan's sampling theorem, which states that if a
signal contains no frequency higher than o radians per second, it is
completely characterized by the values of the signal measured at
instants of time separated by T = %(2xn/w¢) second.

étEiI anoéher exﬁ;essionwfor E*(é) can be obtained by éomplex 7

convolution. Since

¥ (t) = e(t)eq(t)
then C+joo
B (s) = B(8) @ o) = o | s - Da
C- joo C+ joo
- o= | ar(0EG - Da
C- joo

30
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Now

Op(s) =L LST(t)] =1+ e I8 4 2T

Using the first integral above for E*(s),

CHijm

EX(s) = _L_ f E(f) ——— 4

= % © —ip
C- jo

the conditions on C are such that the pcles of the two functions in the

{-plane are as shown.

m, - Ej
. L x
poles of E(f) \\x poles of AT(s-Q)
" x
H
—— " -
2 N
" X
. |

The integral can be expressed as the integral around the closed path

minus the integral around the infinite arc.

lim EE(f) =0

g-dvoo

If

then the integral around the infinite arc is zero, and




\

E¥(s) = ZiJ residues of E({)A(s-t)

at poles

of E({)

Using
C+jeo

E¥(s) =-5§5 Jf Ap(EIE(s-t)at

C- je

The poles of AT(C) now fall within the closed path. Then

E*(s) = 2>, residues of Ap(£)E(s-0)

at poles

of Ap(t)

The poles of AT(Q) occur at § =% jowg, n = all integers, and

E*(s) = % 21} E(s + jnwg)
n=— [e o]
If
lim ¢E(t) = e(0") # 0,

o

the term e(0+)/2 must be added to the equation for E*(s). See the above

reference to Pierre and Kolb for the proof.

*
Properties of E (s)

1 E*(s) is a periodic function with a periocd jwg.

Proof:

32
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[26]
N -
E*(s) = Zi, e(nT)e nTs
n=0
[+'¢]
* N\ _ s
E (s + mog) = > e(nT)e™ 15~ jnmogT m = integer
n=0
Now
e imo T o - immeg2n/wg o -jim2n | g
Thus o
E*(s + jmog) = z{: e(nT)e s = E*(s)
n=0

2) 1If E(s) has a pole at s = sy, then, E*(s) must have poles at

all integers from -« to 4«),.

s = s] + jmog (m

Proof: 1If e(0+) 0,

B (s) = 1 > E(s+jnwg) = %{+ E(s- jnwg) + E(s) + E(s+inmg)+. . J

n=-

A result of this property is shown in the s-plane diagram. Assume

that the circled poles shown are the poles of E(s). Then E*(s) has

the poles shown. The poles of E*(s) occur in periodic strips. The
strip centered about the real axis is referred to as the primary strip,

and all other strips are referred to as complementary strips. If the
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original poles of E(s) had been

‘jw
x j XPs
2
Y, T
x ] =8
' 2
< ©
LW
5 S -4
—_— . N 2 i
> ‘U - e >
% . W
¥ ]
< 2
x AY
-5 3%
lﬂ 2
X iy X8
2

those shown boxed, the pole distribution of E*(s) would not change.
This is shown by the figure below. Note that even though the fre-
quencies of the two sine waves are different, the sampled output waves

are the same.

Data Holds
The output signal of a sampling device is not in useful form,

but must be recovered by a data hold. Let

en(t) = e(t) for nT S ¢ < (n+ DT

34




35
where e(t) is the signal prior to sampling. Now, by Taylor's series
expansion

1"
en(t) = e(nT) + e'(nT)(t-nT) +-EE§BZZ (t-n’l‘)2 + ...
To rebuild the signal exactly, all of the terms of the expansion must
be used. Practically,only the first term is used in a zero-order hold,
the first two terms in a first-order hold, etc. For the zero order hold,
en(t) = e(nT) nT S e S (n+ 1T
An example is given in the figure below.
e(t) e*(t) c(t)
- - gero-order hold ;——-——?
To determine the transfer function of a zero-order hold, for a unit
impulse input, the output must be as shown. Let Hy(s) be the transfer
aei(t) be,(t)
l
ez (t) eo (t) +(1) 1
——»Hy(s) —— ;
| " T t

function of the zero-order hold. Then




|
|
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-Ts
Eo(s) = Ho(s)Ej(s) = Ho(s) =

The frequency response of a zero-order hold is as shown.

3 | Ho Go) |
Tg\
2w > w
H(Jw)
\ s w
_1300

As stated originally, the width of the pulses, p, may be omitted if
the sampling device is followed by a hold. 1In the physical system,
the hold does not have the transfer function given, since, in the
physical system, the input pulses are of finite height. However, the
output of the physical hold is identical with the output of H,. Thus,
in either case, the correct signal appears at the output of the data
hold. T R

For the first-order hold, the value e'(nT) is not known. It is

normally approximated by

e(nT) - e[:(n-l)T]
T

e'(nT) =

An example using the first-order hold is given below.




+ output of hold

,{/ \
£
P//V/) \\f;;iEPUt to sampler

0 T 2T 3T t

z-transform

* . .
As has been shown, E (s) is a transcendental function. The com-

plex variable s appears only in the form €ST. I1f the substitution is
made

z = 5T
then

and E(z) is a rational fraction in z. E(z) is termed the z-transform

of e(t), or the z-transform of E(s). Since

then
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Also, since

T

E*(s) = > residues of E({) 1

1 e—T(s-E)

at poles

of E(f)
then

E(z) = 211 residues of E({) -——-—l*——j—

at poles
of E({)

Consider the z-transform in terms of transforming from the s-plane
to the z-plane. It is seen that the primary strip in the left half

of the s-plane transforms into the interior of the unit circle in the

s ;30
— S |1—2—s' : __E_}_ I (2]
1 - 3
0, . J\f\\\
3, z j2 s N\
o “aT2T - L N e
g 2D £ IND)
- PR ” ; o
@ 5 -%Ds & 87 ’/©
TR /
3w -_-j/

z-plane. Also, it is seen that each complementary strip in the left
half of the s-plane transforms into the interior of the unit circle

in the z-plane.
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System Analysis

Consider the open-loop system

P C*(t)

* AN )
e(t2-/<~f“£fzJ—_a1> : o (t)
E(s) E*(s) .1 ~— 7 -E-(S)

Now
C(s) = G(s)E (s)
C*(s) = i 21} C(s+jnwg) =4% 211 G(s+jnms)E*(s+jmws)
n=-o n=-o
But
E (s +jnwg) = E¥(s)
Thus
R C*(s) = E*(S)—; 7>7 7 G(S+jnﬂ>s) = E*V('S')G*r(S)
n:-oo
Or
_lci(s = G (s)
E (s)
Or
&z) - g(2)
E(z)

39
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k]

Also consider

Now

C(s) = H(s)A*(s)

c(s) = H' (s)A" (s)
Also

A(s) = G(s)E(s)

A¥(s) =% z G(s + jnwg)E(s + jnug)

n:-m
;1: ZG(s+jmns)E(s+jm>s) #% Z G(s+jnws)-;- z E(s+jnng)
n=-o N n=-o n=-o

Thus

A¥(s) = (GE)*(s) # G (S)E"(s)
and

40
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41
c*(s) = H (s)(GE) (s)
C(z) = H(z)GE(z)

For this system, a transfer function independent of E(s) cannot be
written. In general, if the input signal is not sampled prior to
being applied to a continuous-data transfer function, a transfer
functioﬁ for the system cannot be written.

Consider the closed-loop system
P__//_Qf(s)
"ty o — IS * ! (
R{s) +,~ E{s (5) . C(s)
)2 ey -

-

Ho=

Now
E(s) = R(s) - H(s)C(s) = R(s) - G(s)H(s)E (s)
E*(s) = R'(s) - (GH) (s)E"(s)
Or
E*(s) = R (s)
1 + (GH)*(s)
Thus
C(s) = G(s)E"(s) = SRS
1 + (GH)"(s)
and
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C(s) - G(s)
R¥(s) 1+ (GH)"(s)

Or

C(z) _ G(z)
R(z) 1 + GH(z)

Consider the rigid body system for a Saturn-type vehicle with

the 7 channel omitted.

\]

FiEg

)

D represents a digital compensator and H, a zero-order hold. 1If the

system is opened at ¢y, with an input E;(s) and an output E;(s), then

¥ %
Be = WgsGoPe + WgsHoD Ej
Or
X ¥
_ WSSHOD Ei
fg = —mm

1 - WgsG2

42
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Eo = G1Be = D E;"
1- WSSGZ
Or
*
Eo* _ < GiW5gH, > D*El*
1 - WssGp
Thus
E,(z) GiWgHp
o2 _( Y (2)D(2)

Ei(z) \1- WgsGo /
If the system is opened at P,
* *
Ep = WggPe = WggGEj + WsgHoD (G1Ej)
For this case, no transfer function is possible.

Nyquist Criterion

The Nyquist criterion is applicable to the z-plane if the correct

path is used. The Nyquist path is the s-plane transforms into the path

shown in the z-plane through the transformation z = ST,

e ‘
e T Z]
I
|
| I
-~ { Ll L
all i .I i k4
+ Xe
. %
\—1'—/
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For cases that only the jw axis is required in the s-plane, only the
unit circle is required in the z-plane. Note that the left halfplane
of the s-plane transforms into the interior of the unit circle in the
z-plane.

For certain applications, it may be more convenient to work in a
plane that has the same properties of the s-plane with respect to

stability. The w-plane has these properties. The transformation

A
T 1
D
//’/‘l;/n\\ E
SN N1
,1,/@ 0] \® N @/ @ AQ; .
© sz “ ¢ |®
e \\;J"@

axis in the w-plane is the boundary between the stable region for

poles (the left halfplane) and the unstable region (the right halfplane).
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Comparison of the Describing Function and Equation (47)

TABLE 1

When Broken in ¢ Channel (See Fig. 19)

48

Describing Function Equation (47)(n =T 2) Equation (47)(n =t 10)

Freq. hz Mag. dB. |Angle deg. | Mag. db. Angle deg. | Mag. db. Angle deg.
0.07 ~7.8 i12 -7.8 112 -7.8 112
0.76 -16.8 56 -16.8 56 ~-16.8 56
1.25 -21.2 129 -21.2 129 ~21.2 129
3.06 -27.0 ~-46 -27.0 =46 -27.0 -46
5.00 -50.4 -148 ~50.4 -148 -50.4 -148
7.50 -61.0 162 -61.0 165 -61.1 165
8.00 -62.3 157 -62.7 159 -62.8 159
8.50 -63.7 149 -64.3 154 -64.5 154
; 9.00 -65.1 144 -65.9 150 -65.9 150
9.50 -66.4 138 -67.6 147 -67.8 147
10.5 -67.7 132 -69.3 144 ~69.5 144
11.0 ~70.0 122 -72.9 145 ~73.3 147
12.5 -73.4 108 -77.4 176 -77.4 180
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Fig. 6--Frequency spectrum of ideal sampler output
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